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Traditional Bayesian Variable Selection

Assume fixed predictors xi ∈ Rp and responses

Yi = x′iβ + εi , εi ∼ N (0, 1), i = 1, . . . , n. (1)

There is an unknown subset S0 of q0 < min{n, p} active
predictors

Bayesian approach to recovering S0 starts with a
Spike-and-Slab Prior over all subsets S

γi ≡ I (i ∈ S) ∼ binomial(θ) where θ ∼ beta(a, b)

Π(β | S) =

p∏
i=1

[γiΠ1(βi ) + (1− γi )Π0(βi )]

In the linear model (1), Π(S | Y ) has a closed form so the
computation is “easy”.
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Non-parametric Variable Selection with BART

Assume fixed predictors xi ∈ [0, 1]p and responses

Yi = f0(xi ) + εi , εi ∼ N (0, 1), i = 1, . . . , n. (2)

We assume f0 is α-Hölder continuous

f0 depends on an unknown subset S0 of q0 < min{n, p}
predictors

Given S, we assign a prior on f0 which using forests mappings

BART : fE,B(xS) =
T∑
t=1

fT t ,βt (xS) where xS = {xi : i ∈ S}.

Where E =
{
T 1, . . . , T T

}
are tree partitions and B =

[
β1, . . . ,βT

]
are step coefficients.

Each of fT t ,βt (xS) is a tree: we assign Bayesian CART prior.



ABC Variable
Selection

Yi Liu

Overview of
Problem

Definition of
Bayesian
Variable
Selection

Theory

Implementation

ABC Solution

Methods

Results

We have good theory

Theorem

Under the spike-and-forest prior and some regularity
conditions,

Π

[
{S = S0} ∩

{
KS0 ≤

T∑
t=1

K t ≤ Kn

}
|Y (n)

]
→ 1

in Pn
0 probability as n→∞ and p →∞.

Where K =
(
K 1, . . . ,KT

)′ ∈ NT is the sum of the bottom

leaves count of the trees, KS0 =
⌊
CK/C

2
ε nε

2
n,S0

/ log n
⌋
and

Kn =
⌈
Cnε2

n,s/ log n
⌉
(Liu, Yi and Ročková, Veronika and Wang, Yuexi

(2018) )

Essentially, we get consistency.
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But the marginal likelihood is hard to compute

For the BART case, we notice the following.

1 Marginal Likelihood over all trees Π(Y | S) is not
available in closed form.

2 MCMC can be done in principle, but suffers from poor
mixing.
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Approximate Bayesian Computation

ABC is method that allows us to sample from the posterior
distribution when marginal likelihood is unavailable.

Traditional ABC Procedure:

1 We have some prior Π(θ) and data Ydata

2 Sample from the prior θ ∼ Π(θ)

3 Generate pseudo-data from Y ∗ ∼ Π(Y | θ)

4 Compare Y ∗ with the original data YData

5 If d(Ydata,Y
∗) ≤ ε, accept θ

6 θ1 . . . θn are approximate samples from the posterior
Π(θ|Ydata).
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ABC in action

We consider a ABC Wrapper around BART. Here we introduce
a data splitting process at each iteration.
Data (Y obs

i , x i ) for 1 ≤ i ≤ n

Output Π̂(j ∈ S0 | Y (n))

Set M: the number of ABC simulations; s: the subsample size; ε: the tolerance
threshold; m = 0 the counter

While m ≤ M

(a) Split data Y obs into Y obs
Im

and Y obs
Ic
m

(b) Pick a subset Sm from π(S).

(c) Sample f mE,B from π(fE,B | Y obs
Im
,Sm).

(d) Generate pseudo-data Y ?
i = f mE,B(x i ) + εi for each i /∈ Im.

(e) Compute discrepancy εm = ‖Y ?
Ic
m
− Y obs

Ic
m
‖2.

Accept S if εm < ε and set m = m + 1

Reject S if εm ≥ ε and set m = m + 1

We can obtain marginal inclusion probabilities for each of the
variable.
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Simulation

Friedman Data

f0(x i ) = 10 sin(π xi1 xi2) + 20 (xi3 − 0.5)2 + 10 xi4 + 5 xi5, (3)

where xi ∈ [0, 1]p with p = 100 and n = 500 are iid from a
uniform distribution on a unit cube.

We can use the median probability model rule (Barbieri and
Berger (2012))
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