ABC Variable Selection

Yi Liu

Overview c Problem

Definition of Bayesian Variable Selection Theory Implementati ABC Solution Methods

Approximate Bayesian Computation for Model-Free Bayesian Variable Selection

Yi Liu

University of Chicago

yil@uchicago.edu

June 14, 2019

Special Thanks: Professor Rockova and Yuexi Wang

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

ABC Variable Selection

Yi Liu

Overview o Problem

Definition of Bayesian Variable Selection Theory Implementati ABC Solutio

Methods Results

1 Overview of Problem

Definition of Bayesian Variable Selection

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- Theory
- Implementation

2 ABC SolutionMethods

Results

Traditional Bayesian Variable Selection

ABC Variable Selection

Yi Liu

Overview of Problem

Definition of Bayesian Variable Selection Theory Implementation ABC Solution

Methods Results Assume fixed predictors $\mathbf{x}_i \in \mathbb{R}^p$ and responses

$$Y_i = \mathbf{x}'_i \beta + \varepsilon_i, \quad \varepsilon_i \sim \mathcal{N}(0, 1), \quad i = 1, \dots, n.$$
 (1)

There is an *unknown subset* S_0 of $q_0 < \min\{n, p\}$ active predictors

Bayesian approach to recovering \mathcal{S}_0 starts with a **Spike-and-Slab Prior** over all subsets \mathcal{S}

 $\gamma_i \equiv I(i \in \mathcal{S}) \sim \texttt{binomial}(heta) \quad \texttt{where } heta \sim \texttt{beta}(a, b)$

$$\Pi(\beta \mid S) = \prod_{i=1}^{p} [\gamma_i \Pi_1(\beta_i) + (1 - \gamma_i) \Pi_0(\beta_i)]$$

In the linear model (1), $\Pi(S \mid Y)$ has a closed form so the computation is "easy".

Non-parametric Variable Selection with BART

ABC Variable Selection

Yi Liu

Overview of Problem

Definition of Bayesian Variable Selection

Implementation

ABC Solutio Methods Results Assume fixed predictors $\mathbf{x}_i \in [0, 1]^p$ and responses

$$Y_i = f_0(\mathbf{x}_i) + \varepsilon_i, \quad \varepsilon_i \sim \mathcal{N}(0, 1), \quad i = 1, \dots, n.$$
 (2)

We assume f_0 is α -Hölder continuous

- f₀ depends on an unknown subset S₀ of q₀ < min{n, p} predictors</p>
- Given S, we assign a prior on f_0 which using forests mappings

BART :
$$f_{\mathcal{E}, \mathcal{B}}(\mathbf{x}_{\mathcal{S}}) = \sum_{t=1}^{T} f_{\mathcal{T}^{t}, \beta^{t}}(\mathbf{x}_{\mathcal{S}})$$
 where $\mathbf{x}_{\mathcal{S}} = \{x_{i} : i \in \mathcal{S}\}.$

Where $\mathcal{E} = \{\mathcal{T}^1, \dots, \mathcal{T}^T\}$ are tree partitions and $\boldsymbol{B} = [\boldsymbol{\beta}^1, \dots, \boldsymbol{\beta}^T]$ are step coefficients.

Each of $f_{\mathcal{T}^t,\beta^t}(\mathbf{x}_{\mathcal{S}})$ is a tree: we assign Bayesian CART prior.

We have good theory

ABC Variable Selection

Yi Liu

Overview of Problem

Definition o Bayesian Variable Selection

Theory Implementation

ABC Solutio Methods Results

Theorem

Under the **spike-and-forest** prior and some regularity conditions,

$$\Pi\left[\{\mathcal{S}=\mathcal{S}_0\}\cap\left\{\mathcal{K}_{\mathcal{S}_0}\leq\sum_{t=1}^{T}\mathcal{K}^t\leq\mathcal{K}_n\right\}|\boldsymbol{Y}^{(n)}\right]\to1$$

in P_0^n probability as $n \to \infty$ and $p \to \infty$. Where $K = (K^1, \ldots, K^T)' \in \mathbb{N}^T$ is the sum of the bottom leaves count of the trees, $K_{\mathcal{S}_0} = \left\lfloor C_K / C_{\varepsilon}^2 n \varepsilon_{n,\mathcal{S}_0}^2 / \log n \right\rfloor$ and $K_n = \left\lceil Cn \varepsilon_{n,s}^2 / \log n \right\rceil$ (Liu, Yi and Ročková, Veronika and Wang, Yuexi (2018)

Essentially, we get consistency.

But the marginal likelihood is hard to compute

ABC Variable Selection

Yi Liu

Overview of Problem

Definition of Bayesian Variable Selection Theory Implementation

ABC Soluti Methods Results For the BART case, we notice the following.

1 Marginal Likelihood over all trees $\Pi(Y \mid S)$ is not available in closed form.

2 MCMC can be done in principle, but suffers from poor mixing.

Approximate Bayesian Computation

ABC Variable Selection

Yi Liu

Overview of Problem

Definition of Bayesian Variable Selection Theory Implementatio

Methods Results ABC is method that allows us to sample from the posterior distribution when marginal likelihood is unavailable.

Traditional ABC Procedure:

- **1** We have some prior $\Pi(\theta)$ and data Y_{data}
- **2** Sample from the prior $\theta \sim \Pi(\theta)$
- **3** Generate **pseudo-data** from $Y^* \sim \Pi(Y \mid \theta)$
- 4 Compare Y^* with the original data Y_{Data}
- 5 If $d(Y_{data}, Y^*) \leq \epsilon$, accept θ
- 6 $\theta_1 \dots \theta_n$ are approximate samples from the posterior $\Pi(\theta|Y_{data})$.

ABC in action

ABC Variable Selection

Yi Liu

Overview of Problem

Definition of Bayesian Variable Selection Theory Implementatio

Methods Results We consider a ABC Wrapper around BART. Here we introduce a data splitting process at each iteration.

Data $(Y_i^{obs}, \mathbf{x}_i)$ for $1 \le i \le n$

Output $\widehat{\Pi}(j \in S_0 | \mathbf{Y}^{(n)})$

Set *M*: the number of ABC simulations; *s*: the subsample size; ϵ : the tolerance threshold; m = 0 the counter

While $m \leq M$

- (a) Split data \boldsymbol{Y}^{obs} into $\boldsymbol{Y}^{obs}_{\mathcal{I}_m}$ and $\boldsymbol{Y}^{obs}_{\mathcal{I}_m^c}$
- (b) Pick a subset S_m from $\pi(S)$.
- (c) Sample $f_{\mathcal{E},B}^m$ from $\pi(f_{\mathcal{E},B} | \mathbf{Y}_{\mathcal{I}_m}^{obs}, \mathcal{S}_m)$.
- (d) Generate pseudo-data $Y_i^{\star} = f_{\mathcal{E}, B}^m(\mathbf{x}_i) + \varepsilon_i$ for each $i \notin I_m$.
- (e) Compute discrepancy $\epsilon_m = \| \boldsymbol{Y}_{\mathcal{I}_m^c}^{\star} \boldsymbol{Y}_{\mathcal{I}_m^c}^{obs} \|_2$.

Accept S if $\epsilon_m < \epsilon$ and set m = m + 1

Reject S if $\epsilon_m \geq \epsilon$ and set m = m + 1

We can obtain *marginal inclusion probabilities* for each of the variable.

Simulation

Friedman Data

Yi Liu

Overview of Problem

Definition of Bayesian Variable Selection Theory Implementati ABC Solutio Methods Results

$f_0(\boldsymbol{x}_i) = 10\,\sin(\pi\,x_{i1}\,x_{i2}) + 20\,(x_{i3} - 0.5)^2 + 10\,x_{i4} + 5\,x_{i5}, \ (3)$

where $x_i \in [0,1]^p$ with p = 100 and n = 500 are *iid* from a uniform distribution on a unit cube.

We can use the median probability model rule (Barbieri and Berger (2012))

References

ABC Variable Selection

Yi Liu

Overview o Problem

Definition of Bayesian Variable Selection Theory Implementation ABC Solution

Results

Liu, Y., Ročková, V. and Wang, Y. (2018) ABC Variable Selection with Bayesian Forests (Submitted)

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Barbieri M and Berger J O

Optimal predictive model selection. Annals of Statistics, 2012 ABC Variable Selection

Yi Liu

Overview o Problem

Definition of Bayesian Variable Selection Theory Implementat ABC Soluti

Methods Results

The End

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ