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Abstract

Thompson sampling is a heuristic algorithm for the multi-armed bandit problem
which has a long tradition in machine learning. The algorithm has a Bayesian spirit
in the sense that it selects arms based on posterior samples of reward probabilities
of each arm. By forging a connection between combinatorial binary bandits and
spike-and-slab variable selection, we propose a stochastic optimization approach to
subset selection called Thompson Variable Selection (TVS). TVS is a framework
for interpretable machine learning which does not rely on the underlying model to
be linear. TVS brings together Bayesian reinforcement and machine learning in
order to extend the reach of Bayesian subset selection to non-parametric models and
large datasets with very many predictors and/or very many observations. Depending
on the choice of a reward, TVS can be deployed in offline as well as online setups
with streaming data batches. Tailoring multiplay bandits to variable selection, we
provide regret bounds without necessarily assuming that the arm mean rewards be
unrelated. We show a very strong empirical performance on both simulated and real
data. Unlike deterministic optimization methods for spike-and-slab variable selection,
the stochastic nature makes TVS less prone to local convergence and thereby more
robust.

Keywords: BART, Combinatorial Bandits, Interpretable Machine Learning, Spike-and-
Slab, Thompson Sampling, Variable Selection

1 Interpretable Machine Learning

A fundamental challenge in statistics that goes beyond mere prediction is to glean inter-

pretable insights into the nature of real-world processes by identifying important correlates
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of variation. Unfortunately, many today’s most powerful machine learning prediction algo-

rithms lack the capacity to perform variable screening in a principled and/or reliable way.

For example, deep learning (DL) is widely accepted as one of the best performing artificial

intelligence (AI) platforms. However, DL prediction mappings lack an intuitive algebraic

form which renders their interpretability/explainability (i.e. insight into the black box de-

cision process) far from straightforward. Substantial effort has been recently devoted to

enhancing the explainability of machine (deep) learning through the identification of key

variables that drive predictions (Garson (1991); Olden and Jackson (2002); Zhang et al.

(2000); Lu et al. (2018)). For instance, Lu et al. (2018) integrated the idea of a knock-off

filter with deep neural networks and derived ’DeepPINK’ for variable selection that controls

the false discovery rate. In a similar vein, Burns et al. (2019) proposed a formal testing

procedure for whether the model prediction is significantly different after features have

been replaced with uninformative counterfactuals. Horel and Giesecke (2019) proposed

a test statistic for a single-layer feed forward network. While possessing nice theoretical

guarantees, many of these procedures are not yet feasible for large-scale applications.

A variable can be important because its change has a causal impact or because leaving it

out reduces overall prediction capacity (Jiang and Owen (2003)). Such leave-one-covariate-

out type inference has a long tradition, going back to at least Breiman (2001). In random

forests, for example, variable importance is assessed by the difference between prediction er-

rors in the out-of-bag sample before and after noising the covariate through a permutation.

Lei et al. (2018) propose the LOCO method which gauges local effects of removing each

covariate on the overall prediction capability and derives an asymptotic distribution for

this measure to conduct proper statistical tests. There is a wealth of literature on variable

importance measures, see Fisher et al. (2019) for a recent overview. In Bayesian forests,

such as BART (Chipman et al. (2001)), one keeps track of predictor inclusion frequencies

and outputs an average proportion of all splitting rules inside a tree ensemble that split on

a given variable. In deep learning, one can construct variable importance measures using

network weights (Garson (1991); Ye and Sun (2018)). Owen and Prieur (2017) introduce a

variable importance based on a Shapley value and Hooker (2007) investigates diagnostics

of black box functions using functional ANOVA decompositions with dependent covari-

ates. While useful for ranking variables, importance measures are less intuitive for model
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selection and are often not well-understood theoretically (with a few exceptions including

Ishwaran et al. (2007); Kazemitabar et al. (2017)).

This work focuses on high-dimensional applications (either very many predictors or very

many observations, or both), where computing importance measures and performing tests

for predictor effects quickly becomes infeasible. We consider the non-parametric regression

model which provides a natural statistical framework for supervised machine learning. The

data setup consists of a continuous response vector Y(n) = (Y1, · · · , Yn)′ that is linked

stochastically to a fixed set of predictors xi = (xi1, · · · , xip)′ for 1 ≤ i ≤ n through

Yi = f0(xi) + εi where εi
iid∼ N(0, σ2), (1)

and where f0 is an unknown regression function. The variable selection problem occurs

when there is a subset S0 ⊂ {1, · · · , p} of q0 = |S0| predictors which exert influence on

the mixing function f0 and we do not know which subset it is. In other words, f0 is

constant in directions outside S0 and the goal is to identify active directions (regressors)

in S0 while, at the same time, permitting nonlinearities and interactions. The traditional

Bayesian approach to this problem starts with a prior distribution over the 2p sets of

active variables. This is typically done in a hierarchical fashion by first assigning a prior

distribution π(q) on the subset size q = |S| and then a conditionally uniform prior on S,

given q, i.e. π(S|q) = 1

(pq)
. This prior can be translated into the spike-and-slab prior where,

for each coordinate 1 ≤ i ≤ p, one assumes a binary indicator γi for whether or not the

variable xi is active and assigns a prior

P(γi | θ) = θ, θ ∼ Beta(a, b) for some a, b > 0. (2)

The active subset S is then constructed as S = {j : γj = 1}. There is no shortage of

literature on spike-and-slab variable selection in the linear model, addressing prior choices

(Mitchell and Beauchamp (1988); Rockova and George (2018); Rossell and Telesca (2017);

Vannucci and Stingo (2010); Brown et al. (1998)), computational aspects (Carbonetto

et al. (2012); Rockova and George (2014); Bottolo et al. (2010), George and McCulloch

(1993),George and McCulloch (1997)) and/or variable selection consistency results (Castillo

et al. (2015); Johnson and Rossell (2012); Narisetty et al. (2014)). In this work, we leave

behind the linear model framework and focus on interpretable machine learning linking

spike-and-slab methods with binary bandits.
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This paper introduces Thompson Variable Selection (TVS), a stochastic optimization

approach to subset selection based on reinforcement learning. The key idea behind TVS

is that variable selection can be regarded as a combinatorial bandit problem where each

variable is treated as an arm. TVS sequentially learns promising combinations of arms

(variables) that are most likely to provide a reward. Depending on the learning tool for

modeling f0 (not necessarily a linear model), TVS accommodates a wide range of rewards

for both offline and online (streaming batches) setups. The fundamental appeal of active

learning for subset selection (as opposed to MCMC sampling) is that those variables which

provided a small reward in the past are less likely to be pulled again in the future. This

exploitation aspect steers model exploration towards more promising combinations and

offers dramatic computational dividends. Indeed, similarly as with backward elimination

TVS narrows down the inputs contributing to f0 but does so in a stochastic way by learning

from past mistakes. TVS aggregates evidence for variable inclusion and quickly separates

signal from noise by minimizing regret motivated by the median probability model rule

(Barbieri and Berger, 2004). We provide regret bounds which do not necessarily assume

that the arm outcomes be unrelated. In addition, we show strong empirical performance

and demonstrate the potential of TVS to meet demands of very large datasets.

This paper is structured as follows. Section 2 revisits known facts about multi-armed

bandits. Section 3 develops the bandits framework for variable selection and Section 4

proposes Thompson Variable Selection and presents a regret analysis. Section 5 presents

two implementations (offline and online) on two benchmark simulated data. Section 6

presents a thorough simulation study and Section 7 showcases TVS performance on real

data. We conclude with a discussion in Section 8.

2 Multi-Armed Bandits Revisited

Before introducing Thompson Variable Selection, it might be useful to review several known

facts about multi-armed bandits. The multi-armed bandit (MAB) problem can be moti-

vated by the following gambling metaphor. A slot-machine player needs to decide between

multiple arms. When pulled at time t, the ith arm gives a random payout γi(t). In the

Bernoulli bandit problem, the rewards γi(t) ∈ {0, 1} are binary and P(γi(t) = 1) = θi. The

distributions of rewards are unknown and the player can only learn about them through
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playing. In doing so, the player faces a dilemma: exploiting arms that have provided high

yields in the past and exploring alternatives that may give higher rewards in the future.

More formally, an algorithm for MAB must decide which of the p arms to play at time

t, given the outcome of the previous t − 1 plays. A natural goal in the MAB game is to

minimize regret, i.e. the amount of money one loses by not playing the optimal arm at each

step. Denote with i(t) the arm played at time t, with θ? = max
1≤i≤p

θi the best average reward

and with ∆i = θ?−θi the gap between the rewards of an optimal action and a chosen action.

The expected regret after T plays can be then written as E[R(T )] =
∑p

i=1 ∆iE[ki(T )], where

kj(T ) =
∑T

t=1 I[i(t) = j] is the number of times an arm j has been played up to step T .

There have been two main types of algorithms designed to minimize regret in the MAB

problem: Upper Confidence Bound (UCB) of Lai and Robbins (1985) and Thompson

Sampling (TS) of Thompson (1933). Tracing back to Agrawal (1995), UCB consists of

computing, at each round t and for each arm i, a reward index (e.g. an upper bound of the

mean reward of the considered arm that holds with high confidence) and then selecting the

arm with the largest index. Thompson Sampling, on the other hand, is a Bayesian-inspired

heuristic algorithm that achieves a logarithmic expected regret (Agrawal and Goyal, 2012)

in the Bernoulli bandit problem. Starting with a non-informative prior θi
iid∼ Beta(1, 1) for

1 ≤ i ≤ p, this algorithm: (a) updates the distribution of θi as Beta(ai(t) + 1, bi(t) + 1),

where ai(t) and bi(t) are the number of successes and failures of the arm i up to time t,

(b) samples θi(t) from these posterior distributions, and (c) plays the arm with the highest

θi(t). Agrawal and Goyal (2012) extended this algorithm to the general case where rewards

are not necessarily Bernoulli but general random variables on the interval [0, 1]. Scott

(2010) and Sabes and Jordan (1996) proposed a Randomized Probability Matching variant

which allocates observations to arms according to their probability of being the best arm.

The MAB problem is most often formulated as a single-play problem, where only one

arm can be selected at each round. Komiyama et al. (2015) extended Thompson sampling

to a multi-play scenario, where at each round t the player selects a subset St of L < p arms

and receives binary rewards of all selected arms. For each 1 ≤ i ≤ p, these rewards ri(t) are

iid Bernoulli with unknown success probabilities θi where γi(t) and γj(t) are independent

for i 6= j and where, without loss of generality, θ1 > θ2 > · · · > θp. The player is interested

in maximizing the sum of expected rewards over drawn arms, where the optimal action is
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playing the top L arms S0 = {1, . . . , L}. The regret depends on the combinatorial structure

of arms drawn and, similarly as before, is defined as the gap between an expected cumulative

reward and the optimal drawing policy, i.e. E[R(T )] = E
∑T

t=1

(∑
i∈S0 θi −

∑
i∈St θi

)
Fixing

L, the number of arms played, Komiyama et al. (2015) propose a Thompson sampling

algorithm for this problem and show that it has a logarithmic expected regret with respect

to time and a linear regret with respect to the number of arms. Our metamorphosis of

multi-armed bandits into a variable selection algorithm will ultimately require that the

number L of arms played is random and that the rewards at each time t can be dependent.

Combinatorial bandit problems (Chen et al. (2013); Gai et al. (2012); Cesa-Bianchi and

Lugosi (2012)) can be seen as a generalization of multi-play bandits, where any arbitrary

combination of arms S (called super-arms) is played at each round and where the reward

r(S) can be revealed for the entire collective S (a full-bandit feedback) or for each con-

tributing arm i ∈ S (a semi-bandit feedback), see e.g. Wang and Chen (2018); Combes

and Proutiere (2014); Kveton et al. (2015); Combes and Proutiere (2014); Kveton et al.

(2015).

3 Variable Selection as a Bandit Problem

Bayesian model selection is regarded as more or less synonymous to finding the MAP

(maximum-a-posteriori) model Ŝ = arg maxS π(S |Y (n)). Even when the marginal likeli-

hood is available, this model can computationally unattainable for p as small as 20. In

order to accelerate Bayesian variable selection using multi-armed bandits techniques one

idea immediately comes to mind. One could treat each of the 2p models as a base arm.

Assigning prior model probabilities according to θi ∼ Beta(ai, bi) for 1 ≤ i ≤ 2p for some1

ai > 0 and bi > 0, one could play a game by sequentially trying out various arms (variable

subsets) and collect rewards to prioritize subsets that were suitably “good”. Identifying

the arm with the highest mean reward could then serve as a proxy for the best model. This

naive strategy, however, would not be operational due to the exponential number of arms

to explore.

Instead of the MAP model, it has now been standard practice to report the median

probability model (MPM) (Barbieri and Berger (2004)) consisting of those variables whose

1chosen to correspond to marginals of a Dirichlet distribution
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posterior inclusion probability πi ≡ P(γi = 1 |Y (n)) is at least 0.5. More formally, MPM is

defined, for π = (π1, . . . , πp)
′, as

ŜMPM = arg max
S

rπ(S) = {i : πi ≥ 0.5} where rπ(S) =

{∏
i∈S

πi
∏
i/∈S

(1− πi)

}
. (3)

This model is the optimal predictive model in linear regression under some assumptions

(Barbieri et al., 2018). Obtaining πi’s, albeit easier than finding the MAP model, requires

posterior sampling over variable subsets. While this can be done using standard MCMC

sampling techniques in linear regression (George and McCulloch (1997); Narisetty et al.

(2014); Bhattacharya et al. (2016)), here we explore new curious connections to bandits

in order to develop a much faster stochastic optimization routine for finding MPM-alike

models when the true model is not necessarily linear.

While the MAP model suggests treating each model as a bandit arm, the MPM model

suggests treating each variable as a bandit arm. Under the MAP framework, the player

would be required to play a single arm (i.e. a model) at each step. The MPM framework,

on the other hand, requires playing a random subset of arms (i.e. a model) at each play

opportunity. This is appealing for at least two reasons: (1) there are fewer arms to explore

more efficiently, (2) the quantity rπ(S) can be regarded as a mean regret of a combinatorial

arm (more below) which, given π, has MPM as its computational oracle.

We view Bayesian spike-and-slab selection through the lens of combinatorial bandit

problems by treating variable selection indicators γi’s in (2) as Bernoulli rewards. From

now on, we will refer to each θi as an unknown mean reward, i.e. a probability that the ith

variable exerts influence on the outcome. In sharp contrast to (2) which deploys one θ for

all arms, each arm i ∈ {1, . . . , p} now has its own prior inclusion probability θi, i.e.

P(γi = 1 | θi) = θi, θi
ind∼ Beta(ai, bi) for some ai, bi > 0. (4)

In the original spike-and-slab setup (2), the mixing weight θ served as a global shrinkage

parameter determining the level of sparsity and linking coordinates to borrow strength

(Rockova and George (2018)). In our new bandit formulation (4), on the other hand,

the reward probabilities θi serve as a proxy for posterior inclusion probabilities πi whose

distribution we want to learn by playing the bandits game. Recasting the spike-and-slab

prior in this way allows one to approach Bayesian variable selection from a more algorithmic

(machine learning) perspective.
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3.1 The Global Reward

Before proceeding, we need to define the reward in the context of variable selection. One

conceptually appealing strategy would be to collect a joint reward R(St) (e.g. goodness of

model fit) reflecting the collective effort of all contributing arms and then redistribute it

among arms inside the super-arm St played at time t. One example would be the Shapley

value (Shapley (1953); Owen and Prieur (2017)), a construct from cooperative game theory

for the attribution problem that distributes the value created by a team to its individual

members. The Shapley value has become a popular method for prediction attribution in

machine learning (Sundararajan and Najmi (2019); Mase et al. (2019)). Although the

Shapley value has a strong intuitive appeal, computation remains a challenge (Castro et al.

(2009); Song et al. (2016)).

We try a different route. Instead of collecting a global reward first and then redistribut-

ing it, our strategy consists of first collecting individual rewards γti ∈ {0, 1} for each played

arm i ∈ St and then weaving them into a global reward R(St). We assume that γti ’s are

iid from (4) for each i ∈ {1, . . . , p}. Unlike traditional combinatorial bandits that define

the global reward R(St) =
∑

i∈S γ
t
i as a sum of individual outcomes (Gai et al., 2012), we

consider a global reward for variable selection motivated by the median probability model.

One natural choice would be a binary global reward R(St) =
∏

i∈St γ
t
i

∏
i/∈St(1 − γ

t
i) ∈

{0, 1} for whether or not all arms inside St yielded a reward and, at the same time, none

of the arms outside St did. Assuming independent arms, the expected reward equals

E[R(St)] =
∏

i∈St θi
∏

i/∈St(1 − θi) = rθ(St) and has the “median probability model” as

its computational oracle, as can be seen from (3). However, this expected reward is not

monotone in θi’s (a requirement needed for regret analysis) and, due to its dichotomous

nature, it penalizes all mistakes (false positives and negatives) equally.

We consider an alternative reward function which also admits a computational oracle

but treats mistakes differentially. For some 0 < C < 1, we define the global reward RC(St)

for a subset St at time t as

RC(St) =
∑
i∈St

log
(
C + γti

)
. (5)

Similarly as R(St) (defined above) the reward is maximized for the model which includes

all the positive arms and none of the negative arms, i.e. arg maxS RC(S) = {i : γti = 1}.
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Unlike R(St), however, the reward will penalize subsets with false positives, a penalty

log(C) for each, and there is an opportunity cost of log(1 + C) for each false negative.

The expected global reward depends on the subset St and the vector of yield probabilities

θ = (θ1, . . . , θp)
′, i.e.

rCθ (St) = E [RC(St)] =
∑
i∈St

[
θi log

(
C + 1

C

)
− log

(
1

C

)]
. (6)

Note that this expected reward is monotone in θi’s and is Lipschitz continuous. Moreover,

it also has the median probability model as its computational oracle.

Lemma 1 Denote with SO = arg maxS r
C
θ (S) the computational oracle. Then we have

SO =

{
i : θi ≥

log(1/C)

log[(C + 1)/C]

}
. (7)

With C = (
√

5− 1)/2, the oracle is the median probability model {i : θi ≥ 0.5}.

Proof: It follows immediately from the definition of RC(St) and the fact that log(1/C) =

0.5 log[(1 + C)/C] for C = (
√

5− 1)/2.

Note that the choice of C = (
√

5 − 1)/2 incurs the same penalty/opportunity cost for

false positives and negatives since log(1 + C) = − log(C). The existence of the computa-

tional oracle for the expected reward rCθ (S) is very comforting and will be exploited in our

Thompson sampling algorithm introduced in Section 4

3.2 The Local Rewards

Having introduced the global reward (5), we now clarify the definition of local rewards γti .

We regard St as a smaller pool of candidate variables, which can contain false positives

and false negatives. The goal is to play a game by sequentially trying out different subsets

and reward true signals so that they are selected in the next round and to discourage false

positives from being included again in the future. Denote with S the set of all subsets of

{1, . . . , p} and with D the “data” at hand consisting of |D| observations (Yi,xi) from (1).

We introduce a feedback rule

r(St,D) : S× R|D| → {0, 1}|St|, (8)

which, when presented with data D and a subset St, outputs a vector of binary rewards

r(St,D) = (γti : i ∈ St)′ for whether or not a variable xi for i ∈ St is relevant for predicting or
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explaining the outcome. This feedback is only revealed if i ∈ St. We consider two sources of

randomness that implicitly define the reward distribution r(St,D): (1) a stochastic feedback

rule r(·) assuming that data D is given, and (2) a deterministic feedback rule r(·) assuming

that data D is stochastic.

The first reward type has a Bayesian flavor in the sense that it is conditional on the

observed data Dn = {(Yi,xi) : 1 ≤ i ≤ n}, where rewards can be sampled using Bayesian

stochastic computation (i.e. MCMC sampling). Such rewards are natural in offline settings

with Bayesian feedback rules, as we explore in Section 5.1. As a lead example of this strategy

in this paper, we consider a stochastic reward based on BART (Chipman et al. (2001)).

In particular, we use the following binary local reward r(St,Dn) = (γti : i ∈ St)′ where

γti = I(M th sample from the BART posterior splits on the variable xi). (9)

The mean reward θi = P(γti = 1) = P[i ∈ F |Dn] can be interpreted as the posterior

probability that a variable xi is split on in a Bayesian forest F given the entire data Dn.

The stochastic nature of the BART computation allows one to regard the reward (9) as

an actual random variable, whose values can be sampled from using standard software.

Since BART is run only with variables inside St (where |St| << p) and only for M burn-in

MCMC iterations, computational gains are dramatic (as we will see in Section 5.1).

The second reward type has a frequentist flavor in the sense that rewards are sampled

by applying deterministic feedback rules on new streams (or bootstrap replicates) Dt of

data. Such rewards are natural in online settings, as we explore in Section 5.2. As a lead

example of this strategy in this paper, we assume that the dataset Dn consist of n = sT

observations and is partitioned into minibatches Dt = {(Yi,xi) : (t− 1)s+ 1 ≤ i ≤ ts} for

t = 1, . . . , T . One could think of these batches as new independent observations arriving

in an online fashion or as manageable snippets of big data. The ‘deterministic’ screening

rule we consider here is running BART for a large number M of MCMC iterations and

collecting an aggregated importance measure IM(i; Dt,St) for each variable.2 We define

IM(i; Dt,St as the average number of times a variable xi was used in a forest where the

average is taken over the M iterations and we then reward those arms which were used at

2 This rule is deterministic in the sense that computing it again on the same data should in principle

provide the same answer. One could, in fact, deploy any other machine learning method that outputs some

measure of variable importance.
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least once on average,

γti = I[IM(i; Dt,St) ≥ 1]. (10)

The mean reward θi = P(γti = 1) can be then interpreted as the (frequentist) probability

that BART, when run on s = n/T observations arising from (1), uses a variable xi at least

once on average over M iterations. We illustrate this online variant in Section 5.2.

Remark 1 Instead of binary local rewards (8), one can also consider continuous rewards

γti ∈ [0, 1]|St| by rescaling variable importance measures obtained by a machine learning

method (e.g. random forests (Louppe et al. (2013)), deep learning (Horel and Giesecke

(2019)), and BART (Chipman et al. (2010))). Our Thompson sampling algorithm can

be then modified by dichotomizing these rewards through independent Bernoulli trials with

probabilities equal to the continuous rewards (Agrawal and Goyal, 2012).

4 Introducing Thompson Variable Selection (TVS)

This section introduces Thompson Variable Selection (TVS), a reinforcement learning al-

gorithm for subset selection in non-parametric regression environments. The computation

alternates between Choose, Reward and Update steps that we describe in more detail below.

The unknown mean rewards will be denoted with θ?i and the ultimate goal of TVS

is to learn their distribution once we have seen the ‘data’3. To this end, we take the

combinatorial bandits perspective (Chen et al. (2013), Gai et al. (2010)) where, instead of

playing one arm at each play opportunity t, we play a random subset St ⊆ {1, . . . , p} of

multiple arms. Each such super-arm St corresponds to a model configuration and the goal

is to discover promising models by playing more often the more promising variables.

Similarly as with traditional Thompson Sampling, the tth iteration of TVS starts off

by sampling mean rewards θi(t) ∼ Beta(ai(t), bi(t)) from a posterior distribution that

incorporates past reward experiences up to time t (as we discussed in Section 2). The

Choose Step then decides which arms will be played in the next round. While the single-

play Thompson sampling policy dictates playing the arm with the highest sampled expected

reward, the combinatorial Thompson sampling policy (Wang and Chen (2018)) dictates

playing the subset that maximizes the expected global reward, given the vector of sampled

3The ‘data’ here refers to the sequence of observed rewards.
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Algorithm 1: Thompson Variable Selection with BART

Define C̃ = log(1/C)
log[(1+C)/C for some 0 < C < 1 and pick M,a, b > 0

Initialize ai(0) := a and bi(0) := b for 1 ≤ i ≤ p and for t = 1, . . . , T
Choose Step

C: Set St = ∅ and for i = 1 · · · p do
C1: Sample θi(t) ∼ Beta(ai(t), bi(t))
C2: Compute St = {i : θi(t) ≥ C̃} from (7)
C2∗: Compute St from (13)

Reward Step
R: Collect local rewards for each 1 ≤ i ≤ p from (9) (offline) or (10) (online)

Update Step
U: If γti = 1 then set ai(t+ 1) = ai(t) + 1, else bi(t+ 1) = bi(t) + 1

Algorithm 1: Thompson Variable Selection with BART (? is an alternative with known q?)

probabilities θ(t) = (θ1(t), . . . , θp(t))
′. The availability of the computational oracle (from

Lemma 1) makes this step awkwardly simple as it boils down to computing SO in (7).

Unlike multi-play bandits where the number of played arms is predetermined (Komiyama

(2015)), this strategy allows one to adapt to the size of the model. We do, however, consider

a variant of the computational oracle (see (13) below) for when the size q? = |S?| of the

‘true’ model S? = arg maxS r
C
θ?(S) is known. The Choose Step is then followed by the

Reward Step (step R in Table 1) which assigns a prize to the chosen subset St by collecting

individual rewards γti (for the offline setup in (9) or for the online setup (10)). Finally, each

TVS iteration concludes with an Update Step which updates the beta posterior distribution

(step U in Table 1).

The fundamental goal of Thompson Variable Selection is to learn the distribution of

mean rewards θi’s by playing a game, i.e. sequentially creating a dataset of rewards by

sampling from beta posterior4 distributions that incorporate past rewards and the observed

data D. One natural way to distill evidence for variable selection is through the means

π(t) = (π1(t), . . . , πp(t))
′ of these beta distributions

πi(t) =
ai(t)

ai(t) + bi(t)
, 1 ≤ i ≤ p, (11)

which serve as a proxy for posterior inclusion probabilities. Similarly as with the classical

median probability model (Barbieri and Berger (2004)), one can deem important those

variables with πi(t) above 0.5 (this corresponds to one specific choice of C in Lemma

1). More generally, at each iteration t TVS outputs a model Ŝt, which satisfies Ŝt =

4This posterior treats the past rewards as the actual data.
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arg maxS r
C
π(t). From Lemma 1, this model can be simply computed by truncating individual

πi(t)’s. Upon convergence, i.e. when trajectories πi(t) stabilize over time, TVS will output

the same model Ŝt. We will see from our empirical demonstrations in Section 5 that the

separation between signal and noise (based on πi(t)’s) and the model stabilization occurs

fast. Before our empirical results, however, we will dive into the regret analysis of TVS.

4.1 Regret Analysis

Thompson sampling (TS) is a policy that uses Bayesian ideas to solve a fundamentally

frequentist problem of regret minimization. In this section, we explore regret properties

of TVS and expand current theoretical understanding of combinatorial TS by allowing for

correlation between arms. Theory for TS was essentially unavailable until the path-breaking

paper by Agrawal and Goyal (2012) where the first finite-time analysis was presented for

single-play bandits. Later, Leike et al. (2016) proved that TS converges to the optimal

policy in probability and almost surely under some assumptions. Several theoretical and

empirical studies for TS in multi-play bandits are also available. In particular, Komiyama

et al. (2015) extended TS to multi-play problems with a fixed number of played arms

and showed that it achieves the optimal regret bound. Recently, Wang and Chen (2018)

introduced TS for combinatorial bandits and derived regret bounds for Lipschitz-continuous

rewards under an offline oracle. We build on their development and extend their results to

the case of related arms.

Recall that the goal of the player is to minimize the total (expected) regret under time

horizon T defined below

Reg(T ) = E

[
T∑
t=1

(
rCθ?(S?)− rCθ?(St)

)]
, (12)

where S? = arg maxS r
C
θ?(St) with q? = |S?|, θ?i = E[γti ] and where the expectation is

taken over the unknown drawing policy. Choosing C as in Lemma 1, one has log(1 +C) =

− log(C) = D and thereby

Reg(T ) = DE

[
T∑
t=1

p∑
i=1

(2θ?i − 1)[I(i ∈ S?\St)− I(i ∈ St\S?)]

]
.

Note that (2θ?i − 1) is positive iff i ∈ S?. Upper bounds for the regret (12) under the

drawing policy of our TVS Algorithm 1 can be obtained under various assumptions.
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Assuming that the size q? of the optimal model S? is known, one can modify Algorithm

1 to confine the search to models of size up to q?. Denoting I = {S ⊂ {1, . . . , p} : |S| ≤ q?},

one plays the optimal set of arms within the set I, i.e. replacing the computational oracle

in (7) with Sq
?

O = arg maxS∈I rθ(S). We denote this modification with C2? in Table 1. It

turns out that this oracle can also be easily computed, where the solution consists of (up

to) the top q? arms that pass the selection threshold, i.e.

Sq
?

O =

{
i : θi ≥

log(1/C)

log[(1 + C)/C]

}
∩ J(θ) = {(i1, . . . , iq?)′ ∈ Nq? : θi1 ≥ θi2 ≥ · · · ≥ θi?q}.

(13)

We have the following regret bound which, unlike the majority of existing results for

Thompson sampling, does not require the arms to have independent outcomes γti . The

regret bound depends on the amount of separation between signal and noise.

Lemma 2 Define the identifiability gap ∆i = min
{
θ?j : θ?j > θ?i for j ∈ S?

}
for each arm

i /∈ S?. The Algorithm 1 with a computational oracle Sq
?

O in C2? achieves the following

regret bound

Reg(T ) ≤
∑
i/∈S?

(∆i − ε) log T

(∆i − 2ε)2
+ C

( p
ε4

)
+ p2

for any ε > 0 such that ∆i > 2ε for each i /∈ S? and for some constant C > 0.

Proof: Since I is a matroid (Kveton et al. (2014)) and our mean regret function is

Lipschitz continuous and it depends only on expected rewards of revealed arms, one can

apply Theorem 4 of Wang and Chen (2018).

Assuming that the size q? of the optimal model is unknown and the rewards γti are

independent, we obtain the following bound for the original Algorithm 1 (without restricting

the solution to up to q? variables).

Lemma 3 Define the maximal reward gap ∆max = maxS ∆S where ∆S = [rθ(S?)− rθ(S)]

and for each arm i ∈ {1, . . . , p} define ηi ≡ maxS:i∈S
8B2|S|

∆S−2B(q?2+2)ε
for B = log[(C + 1)/C].

Assume that γti ’s are independent for each t. Then the Algorithm 1 achieves the following

regret bound

Reg(T ) ≤ log(T )

p∑
i=1

ηi + p

(
p2

ε2
+ 3

)
∆max + C

8∆max

ε2

(
4

ε2
+ 1

)q?
log(q?/ε2)

for some constant C > 0 and for any ε > 0 such that ∆S > 2B(q?2 + 2)ε for each S.
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Proof: Follows from Theorem 1 of Wang and Chen (2018).

We now extend Lemma 3 to the case when the rewards obtained from pulling different

arms are related to one another. Gupta et al. (2020) introduced a correlated single-play

bandit version of Thompson sampling using pseudo-rewards (upper bounds on the con-

ditional mean reward of each arm). Similarly as with structured bandits (Pandey et al.

(2007)) we instead interweave the arms by allowing their mean rewards to depend on St,

i.e. instead of a single success probability θi we now have

θi(S) = P(γti = 1|St = S). (14)

We are interested in obtaining a regret bound for the Algorithm 1 assuming (14) in which

case the expected global regret (6) writes as

rCθ (St) = E [RC(St)] =
∑
i∈St

[
θi(St) log

(
C + 1

C

)
− log

(
1

C

)]
. (15)

To this end we impose an identifiability assumption, which requires a separation gap be-

tween the reward probabilities of signal and noise arms.

Assumption 1 Denote with S? = arg maxS r
C
θ?(St) the optimal set of arms. We say that

S? is strongly identifiable if there exists 0 < α < 1/2 such that

∀i ∈ S∗ we have θi(S?) ≥ θi(S) > 0.5 + α ∀S such that i ∈ S,

∀i /∈ S∗ we have θi(S) < 0.5− α ∀S such that i ∈ S.

Under this assumption we provide the following regret bound.

Theorem 1 Suppose that S? is strongly identifiable with α > 0. Choosing C as in Lemma

1, the regret of Algorithm 1 satisfies

Reg(T ) ≤ ∆max

[
8p log(T )

α2
+ c(α)q∗ +

(
2 +

4

α2

)
p

]
, (16)

where c(α) = C̃
[

e−4α

1−e−α2/2

]
+ 8

α2
1

e2α−1
+ e−1

1−e−α/8
+
⌈

8
α

⌉ (
3 + 1

α

)
and C̃ =

(
C1 + C2

1−2α
32α

)
for

some C1, C2 > 0 not related to the Algorithm 1, and ∆max = maxS [rCθ (S∗)− rCθ (S)].

Proof: Appendix (Section A)
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(a) D = 50,M = 5 000 (b) D = 50,M = 50 000 (c) D = 10,M = 5 000 (d) D = 10,M = 50 000

Figure 1: BART variable importance using sparse=TRUE and various number of trees D and

MCMC iterations M . Red squares (the first five covariates) are signals and black dots are noise

variables.

5 Interpretable Machine Learning with TVS

This section serves to illustrate Thompson Variable Selection on benchmark simulated

datasets and to document its performance. While various implementations are possible

(by choosing different rewards r(St,D) in (8)), we will focus on two specific choices that we

broadly categorize into offline variants for when p >> n (Section 5.1) and streaming/online

variants for when n >> p (Section 5.2).

5.1 Offline TVS

As a lead example in this section, we consider the benchmark Friedman data set (Friedman

(1991)) with a vastly larger number of p = 10 000 predictors xi ∈ [0, 1]p obtained by iid

sampling from Uniform(0, 1) and responses Y = (Y1, · · ·Yn)′ obtained from (1) with σ2 = 1

and

f0(xi) = 10 sin(πxi1xi2) + 20(xi3 − 0.5)2 + 10xi4 + 5xi5 for i = 1, . . . , 300.

Due to the considerable number of covariates, feeding all 10 000 predictors into a black box

to obtain variable importance may not be computationally feasible and/or reliable. How-

ever, TVS can overcome this limitation by deploying subsets of predictors. For instance, we

considered variable importance using the BART method (using the option sparse=TRUE
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for variable selection) with D ∈ {10, 50} trees and M ∈ {5 000, 50 000} MCMC iterations

are plotted them in Figure 1. While increasing the number of iterations certainly helps

in separating signal from noise, it is not necessarily obvious where to set the cutoff for

selection. One natural rule would be selecting those variables which have been used at

least once on average over the M iterations. With D = 50 and M = 50 000, this rule would

identify 4 true signals, leaving out the quadratic signal variable x3. The computation took

around 8.5 minutes.

The premise of TVS is that one can deploy a weaker learner (such as a forest with

fewer trees) which generates a random reward that roughly captures signal and is allowed

to make mistakes. With reinforcement learning, one hopes that each round will be wrong

in a different way so that mistakes will not be propagated over time. The expectation is

that (a) feeding only a small subset St in a black box and (b) reinforcing positive outcomes,

one obtains a more principled way of selecting variables and speeds up the computation.

We illustrate the effectiveness of this mechanism below.

We use the offline local binary reward defined in (9). We start with a non-informative

prior ai(0) = bi(0) = 1 for 1 ≤ i ≤ p and choose T = 10 trees in BART so that variables

are discouraged from entering the model too wildly. This is a weak learner which does

not seem to do perfectly well for variable selection even after very many MCMC iterations

(see Figure 1(d)). We use the TVS implementation in Table 1 with a dramatically smaller

number M ∈ {100, 500, 1 000} of MCMC burn-in iterations for BART inside TVS. We will

see below that large M is not needed for TVS to unravel signal even with as few as 10 trees.

TVS results are summarized in Figure 2, which depicts ‘posterior inclusion probabilities’

πi(t) defined in (11) over time t (the number of plays), one line for each of the p =

10 000 variables. To better appreciate informativeness of πi(t)’s, true variables x1, . . . , x5

are depicted in red while the noise variables are black. Figure 2 shows a very successful

demonstration for several reasons. The first panel (Figure 2a) shows a very weak learner

(as was seen from Figure 1) obtained by sampling rewards only after M = 100 burnin

iterations. Despite the fact that learning at each step is weak, it took only around T = 300

iterations (obtained in less than 40 seconds!) for the πi(t) trajectories of the 5 signals to

cross the 0.5 decision boundary. After T = 300 iterations, the noise covariates are safely

suppressed below the decision boundary and the trajectories πi(t) stabilize towards the end
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(a) M = 100 (b) M = 500 (c) M = 1 000

Figure 2: The evolution of inclusion probabilities (11) over “time” t for the Friedman data

set. The plot depicts posterior inclusion probabilities πi(t) in (11) over time (number of TVS

iterations). Red lines indicate the 5 signal variables and black lines indicate the noise variables.

of the plot. Using more MCMC iterations M , fewer TVS iterations are needed to obtain a

cleaner separation between signal and noise (noise πt’s are closer to zero while signal πt’s

are closer to one). With enough internal MCMC iterations (M = 1 000 in the right panel),

TVS is able to effectively separate signal from noise in around 200 iterations (obtained

in less than 2 minutes). We have not seen such conclusive separation with plain BART

(Figure 1) even after very many MCMC iterations which took considerably longer. Note

that each iteration of TVS uses only a small subset of predictors and much fewer iterations

M and TVS is thereby destined to be faster than BART on the entire dataset (compare 8.5

minutes for 20 000 iterations with 40 seconds in Figure 2a). Applying the more traditional

variable selection techniques was also not as successful. For example, the Spike-and-Slab

LASSO (SSL) method (λ1 = 0.1 and λ0 ∈ {0.1 + k × 10 : k = 1, . . . , 10}) which relies on a

linear model missed the quadratic predictor but identified all 4 remaining signals with no

false positives.

5.2 Online TVS

As the second TVS example, we focus on the case with many more observations than

covariates, i.e. n >> p. As we already pointed out in Section 3.2, we assume that the
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dataset Dn = {(Yi,xi) : 1 ≤ i ≤ n} has been partitioned into mini-batches Dt of size

s = n/T . We deploy our online TVS method (Table 1 with C2?) to sequentially screen

each batch and transmit the posterior information onto the next mini-batch through a

prior. This should be distinguished from streaming variable selection, where new features

arrive at different time points (Foster and Stine (2008)). Using the notation rt ≡ r(St,Dt)

in (8) with Dt = {(Yi,xi) : (t− 1)s+ 1 ≤ i ≤ ts} and having processed t− 1 mini-batches,

one can treat the beta posterior as a new prior for the incoming data points, where

π(θ | r1, . . . , rt) ∝ π(θ | r1, . . . , rt−1)
∏
i∈St

θ
γti
i (1− θi)1−γti .

Parsing the observations in batches will be particularly beneficial when processing the entire

dataset (with overwhelmingly many rows) is not feasible for the learning algorithm. TVS

leverages the fact that applying a machine learning method T times using only a subset of

s observations and a subset St of variables is a lot faster than processing the entire data.

While the posterior distribution5 of θi’s after one pass through the entire dataset will have

seen all the data Dn, θi’s can be interpreted as the frequentist probability that the screening

rule picks a variable xi having access to only s measurements.

We illustrate this sequential learning method on a challenging simulated example from

(Liang et al., 2018, Section 5.1) . We assume that the explanatory variables xi ∈ [0, 1]p

have been obtained from xij = (ei + zij)/2 for 1 ≤ i ≤ n and 1 ≤ j ≤ p, where e, zij
iid∼

N (0, 1). This creates a sample correlation of about 0.5 between all variables. The responses

Y = (Y1, · · · , Yn)′ are then obtained from (1), where

f0(xi) =
10xi2

1 + x2
i1

+ 5 sin(xi3xi4) + 2xi5

with σ2 = 0.5. This is a challenging scenario due to (a) the non-negligible correlation

between signal and noise, and (b) the non-linear contributions of x1 − x4. Unlike Liang

et al. (2008) who set n = p = 500, we make the problem considerably more difficult by

choosing n = 20 000 and p = 1 000. We would expect a linear model selection method

to miss these two nonlinear signals. Indeed, the Spike-and-Slab LASSO method (using

λ1 = 0.1 and λ0 ∈ {0.1 + k × 10 : k = 1, . . . , 10} only identifies variables x1, x2 and

x5. Next, we deploy the BART method with variable selection (Linero 2016) by setting

5Treating the rewards as data.
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s = 100 s = 200 s = 500 s = 1 000 s = 5 000 s = 10 000 s = 20 000

T Time HAM Time HAM Time HAM Time HAM Time HAM Time HAM Time HAM

5 000 6.7 4 7.7 5 11.4 3 21.5 2 103.1 3 264.2 8 794.1 16

10 000 16.2 4 16 4 23.6 2 37.8 3 213 8 549.9 18 2368.4 25

20 000 27.3 4 31.1 4 47.7 1 74.7 1 418.4 10 1090.6 21 4207.4 29

Table 1: Computing times (in seconds) and Hamming distance of BART on subsets of observa-

tions using all p covariates. Hamming distance compares the true model with a model obtained

by truncating the BART importance measure at 1.

sparse=TRUE (Linero and Yang (2018)) and 50 trees6 in the BART software (Chipman

et al. (2010)). The choice of 50 trees for variable selection was recommended in Bleich

et al. (2014) and was seen to work very well. Due to the large size of the dataset, it

might be reasonable to first inquire about variable selection from smaller fractions of data.

We consider random subsets of different sizes s ∈ {100, 500, 1 000} as well as the entire

dataset and we run BART for M = 20 000 iterations. Figure 3 depicts BART importance

measures (average number of times each variable was used in the forest). We have seen

BART separating the signal from noise rather well on batches of size s ≥ 1 000 and with

MCMC iterations M ≥ 10 000. The scale of the importance measure depends on s and it

is not necessarily obvious where to make the cut for selection. A natural (but perhaps ad

hoc) criterion would be to pick variables which were on average used at least once. This

would produce false negatives for smaller s and many false positives (29 in this example)

for s = 20 000. The Hamming distance between the true and estimated model as well

as the computing times are reported in Table 1. This illustrates how selection based on

the importance measure is difficult to automate. While visually inspecting the importance

measure for M = 20 000 and s = 20 000 (the entire dataset) in Figure 3d is very instructive

for selection, it took more than 70 minutes on this dataset. To enhance the scalability, we

deploy our reinforcement learning TVS method for streaming batches of data.

Using the online local reward (10) with BART (with 10 trees and sparse=TRUE and

M iterations) on batches of data Dn of size s. This is a weaker learning rule than the

one considered in Figure 3 (50 trees). Choosing s = 100 and M = 10 000, BART may

6Results with 10 were not nearly as satisfactory.
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(a) s = 100 (b) s = 500 (c) s = 1 000 (d) Entire Data

Figure 3: BART variable importance using T = 20 000 (using 50 trees and sparse=TRUE) and

various data subsets. Red squares (the first five covariates) are signals and black dots are noise

variables.

not be able to obtain perfect signal isolation on a single data batch (see Figure 3(a) which

identifies only one signal variable). However, by propagating information from one batch

onto the next, TVS is able to tease out more signal (Figure 4(a)). Comparing Figure 3(b))

and Figure 4(c) is even more interesting, where TVS inclusion probabilities for all signals

eventually cross the decision boundary after merely 40 TVS iterations. There is ultimately

a tradeoff between the batch size s and the number of iterations needed for the TVS to

stabilize. For example, with s = 1 000 one obtains a far stronger learner (Figure 3(c)), but

the separation may not be as clear after only T = n/s = 20 TVS iterations (Figure 4(d)).

One can increase the number of TVS iterations by performing multiple passes through the

data after bootstrapping the entire dataset and chopping it into new batches which are

a proxy for future data streams. Plots of TVS inclusion probabilities after 5 such passes

through the data are in Figure 5. Curiously, one obtains much better separation even for

s = 200 and with larger batches (s = 500) the signal is perfectly separated. Note that TVS

is a random algorithm and thereby the trajectories in Figure 5 at the beginning are slightly

different from Figure 4. Despite the random nature, however, we have seen the separation

apparent from Figure 5 occur consistently across multiple runs of the method.

Several observations can be made from the timing and performance comparisons pre-

sented in Table 2. When the batch size is not large enough, repeated runs will not help.
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(a) s = 100 (b) s = 200 (c) s = 500 (d) s = 1 000

Figure 4: TVS inclusion probabilities T = 10 000 (using 10 trees and sparse=TRUE) and various

batch sizes after single pass through the data.

(a) s = 100 (b) s = 200 (c) s = 500 (d) s = 1 000

Figure 5: TVS inclusion probabilities T = 10 000 (using 10 trees and sparse=TRUE) and various

batch sizes after 5 passes through the data.

The Hamming distance in all cases only consists of false negatives and can be decreased by

increasing the batch size or increasing the number of iterations and rounds. Computation-

ally, it seems beneficial to increase the batch size s and supply enough MCMC iterations.

Variable selection accuracy can also be increased with multiple rounds.
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s = 100 s = 200 s = 500 s = 1 000

Time HAM Time HAM Time HAM Time HAM

T = 500

1 round 58.9 4 34.1 3 19.3 3 15.7 4

5 rounds 251.5 4 165 3 91.2 3 68.7 2

10 rounds 467.5 4 348.8 3 187.8 3 137.2 1

T = 1 000

1 round 84 4 49.8 3 29.5 3 23.6 2

5 rounds 411.8 4 241.5 3 140.8 1 111.4 0

10 rounds 870.6 3 507 2 288.2 1 224.2 0

T = 1 0000

1 round 541.8 3 330.9 2 220.4 0 182.8 0

5 rounds 2421.2 3 1501.9 2 1060.2 0 972.2 0

10 rounds 4841.9 3 3027.9 0 2248.3 0 2087.6 0

Table 2: Computing times (in seconds) and Hamming distance for TVS using different batch

sizes s and BART iterations T and multiple passes through the data. The Hamming distance

compares the true model with a model truncating the last TVS inclusion probability at 0.5.

6 Simulation Study

We further evaluate the performance of TVS in a more comprehensive simulation study.

We compare TVS with several related non-parametric variable selection methods and with

classical parametric ones. We assess these methods based on the following performance

criteria: False Discovery Proportion (FDP) (i.e. the proportion of discoveries that are

false), Power (i.e. the proportion of true signals discovered as such), Hamming Distance

(between the true and estimated model) and Time.

6.1 Offline Cases

For a more comprehensive performance evaluation, we consider the following 4 mean func-

tions f0(·) to generate outcomes using (1). For each setup, we summarize results over 50

datasets of a dimensionality p ∈ {1 000, 10 000} and a sample size n = 300.

• Linear Setup: The regressors xi are drawn independently from N(0,Σ), where

Σ = (σjk)
p,p
j,k=1,1 with σjj = 1 and σjk = 0.9|j−k| for j 6= k. Only the first 5 variables

are related to the outcome (which is generated from (1) with σ2 = 5) via the mean

function f0(xi) = xi1 + 2xi2 + 3xi3 − 2xi4 − xi5.
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• Friedman Setup: The Friedman setup was described earlier in Section 4. In addi-

tion, we now introduce correlations of roughly 0.3 between the explanatory variables.

• Forest Setup: We generate xi from N(0,Σ), where Σ = (σjk)
p,p
j,k=(11) with σjj = 1

and σjk = 0.3|j−k| for j 6= k. We then draw the mean function f0(·) from a BART

prior with 200 trees, using only first 5 covariates for splits. The outcome is generated

from (1) with σ2 = 0.5.

• Liang et al (2016) Setup: This setup was described earlier in Section 5.2. We now

use σ2 = 0.5.

We run TVS with M = 500 and M = 1 000 internal BART MCMC iterations and

with T = 500 TVS iterations. As two benchmarks for comparison, we consider the original

BART method (in the R-package BART) and a newer variant called DART (Linero and

Yang (2018)) which is tailored to high-dimensional data and which can be obtained in

BART by setting sparse=TRUE ( a=1, b=1). We ran BART and DART for M = 50 000

MCMC iterations using the default prior settings with D = 20, D = 50 and D = 200

trees for BART and D = 10, D = 50 and D = 200 trees for DART. We considered two

variable selection criteria: (1) posterior inclusion probability (calculated as the proportion

of sampled forests that split on a given variable) at least 0.5 (see Linero (2018) and Bleich

et al. (2014) for more discussion on variable selection using BART), (2) the average number

of splits in the forest (where the average is taken over the M iterations) at least 1. We

report the settings with the best performance, i.e. BART with D = 20 trees and DART

with D = 50 trees using the second inclusion criterion. The third benchmark method we use

for comparisons is the Spike-and-Slab LASSO (Rockova and George (2018)) implemented

in the R-package SSLASSO with lambda1=0.1 and the spike penalty ranging from λ1 to the

number of variables p (i.e. lambda0 = seq(1, p, length=p)). We choose the same set of

variable chosen by SSLASSO function after the regularization path has stabilized using the

model output.

We report the average performance (over 50 datasets) for p = 10 000 in Figure 6 and

the rest (for p = 1 000) in the Appendix. Recall that the model estimated by TVS is

obtained by truncating πi(500)’s at 0.5. In terms of the Hamming distance, we notice that

TVS performs best across-the-board. DART (with D = 50) performs consistently well in
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Figure 6: Graphs denoting FDP (6a), Power (6b), Hamming Distance (6c), and Time (6d) for

the 4 choices of f0 assuming p = 10 000 and n = 300. The x-axis denotes the choice of f0 and the

various methods are marked with various shades of gray. For TVS, we have two choices M = 500

and M = 1 000.

terms of variable selection, but the timing comparisons are less encouraging. BART (with

D = 20) takes a relatively comparable amount of time as TVS with M = 1 000, but suffers

from less power. SS-LASSO’s performance is strong, in particular for the less non-linear

data setups. The performance of TVS is seen to improve with M .

We also implement a stopping criterion for TVS based on the stabilization of the in-

clusion probabilities πi(t) = ai(t)
ai(t)+bi(t)

. One possibility is to stop TVS when the estimated

model Ŝt obtained by truncating πi(t)’s at 0.5 has not changed for over, say, 100 consecutive

TVS iterations. With this convergence criterion, the convergence times differs across the

different data set-ups. Generally, TVS is able to converge in ∼ 200 iterations for p = 1 000
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and ∼ 300 iterations for p = 10 000. While the computing times are faster, TVS may be

more conservative (lower FDP but also lower Power). The Hamming distance is hence a

bit larger, but comparable to TVS with 500 iterations (Appendix B.1)

6.2 Online Cases

We now consider a simulation scenario where n >> p, i.e. p = 1 000 and n = 10 000. As

described earlier in Section 5.2, we partition the data into minibatches (Y (b),X(b)) of size

s, where Y (b) = (Yi : (b − 1)s + 1 ≤ i ≤ bs) and X(b) = [xi : (b − 1)s + 1 ≤ i ≤ bs]′

for b = 1, . . . , n/s with s ∈ {500, 1000} and M ∈ {500, 1000} using D = 10 trees. In

this study, we consider the same four set-ups as in Section 6.1. We implemented TVS

with a fixed number of rounds r ∈ {1, 5, 10} and a version with a stopping criterion based

on the stabilization of the inclusion probabilities πi(t) = ai(t)
ai(t)+bi(t)

. This means that TVS

will terminate when the estimated model Ŝt obtained by truncating π(t)’s at 0.5 has not

changed for 100 consecutive iterations. The results using the stopping criterion are reported

in Figure 7 and the rest is in the Appendix (Section B.2 ). As before, we report the best

configuration for BART and DART, namely D = 20 for BART and D = 50 for DART

(both with 50 000 MCMC iterations). For both methods, there are non-negligible false

discoveries and the timing comparisons are not encouraging. In addition, we could not

apply both BART and DART with n ≥ 50 000 observations due to insufficient memory. For

TVS, we found the batch size s = 1 000 to work better, as well as running the algorithm

for enough rounds until the inclusion probabilities have stabilized (Figure 7 reports the

results with a stopping criterion). The results are very encouraging. While SSLASSO’s

performance is very strong, we notice that in the non-linear setup of Liang et al. (2018)

there are false non-discoveries.

7 Application on Real Data

7.1 HIV Data

We will apply (offline) TVS on a benchmark Human Immunodeficiency Virus Type I (HIV-

I) data described and analyzed in Rhee et al. (2006) and Barber et al. (2015). This publicly
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Figure 7: Graphs denoting FDP (7a), Power (7b), Hamming Distance (7c), and Time (7d) for

the 4 choices of f0 assuming p = 1 000 and n = 10 000. The x-axis denotes the choice of f0 and the

various methods are marked with various shades of gray. For TVS, we have two choices M = 500

and M = 1 000, both with s = 1000.

available7 dataset consists of genotype and resistance measurements (decrease in suscep-

tibility on a log scale) to three drug classes: (1) protease inhibitors (PIs), (2) nucleoside

reverse transcriptase inhibitors (NRTIs), and (3) non-nucleoside reverse transcriptase in-

hibitors (NNRTIs).

The goal in this analysis is to find mutations in the HIV-1 protease or reverse tran-

scriptase that are associated with drug resistance. Similarly as in Barber et al. (2015) we

analyze each drug separately. The response Yi is given by the log-fold increase of lab-tested

7Stanford HIV Drug Resistance Database https://hivdb.stanford.edu/pages/published_

analysis/genophenoPNAS2006/
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drug resistance in the ith sample with the design matrix X consisting of binary indicators

xij ∈ {0, 1} for whether or not the jth mutation has occurred at the ith sample.8

In an independent experimental study, (Rhee et al., 2005) identified mutations that

are present at a significantly higher frequency in virus samples from patients who have

been treated with each class of drugs as compared to patients who never received such

treatments. While, as with any other real data experiment, the ground truth is unknown,

we treat this independent study are a good approximation to the ground truth. Similarly

as Barber et al. (2015), we only compare mutation positions since multiple mutations in

the same position are often associated with the same drug resistance outcomes.

For illustration, we now focus on one particular drug called Lopinavir (LPV). There

are p = 206 mutations and n = 824 independent samples available for this drug. TVS

was applied to this data for T = 500 iterations with M = 1 000 inner BART iterations.

In Figure 8, we differentiate those mutations whose position were identified by Rhee et al.

(2005) and mutations which were not identified with blue and red colors, respectively.

From the plot of inclusion probabilities in Figure 8a, it is comforting to see that only one

unidentified mutation has a posterior probability πj(t) stabilized above the 0.5 threshold.

Generally, we observe the experimentally identified mutations (blue curves) to have higher

inclusion probabilities.

Comparisons are made with DART, Knockoffs (Barber et al., 2015), LASSO (10-fold

cross-validation), and Spike-and-Slab LASSO (Rockova and George (2018)), choosing λ1 =

0.1 and λ0 ∈ {λ1 + 10 × k; k = 0, 1, . . . , p}). Knockoffs, LASSO, and the Spike-and-Slab

LASSO assume a linear model with no interactions. DART was implemented using T = 50

trees and 50 000 MCMC iterations, where we select those variables whose average number

splits was at least one. The numbers of discovered Positions for each method are plotted

in Figure 8b. While LASSO selects many more experimentally validated mutations, it also

includes many unvalidated ones. TVS, on the other hand, has a very small number of

“false discoveries” while maintaining good power. Additional results are included in the

Appendix (Section C).

8As suggested in the analysis of Barber et al. (2015), when analyzing each drug, only mutations that

appear 3 or more times in the samples are taken into consideration.
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Figure 8: Thompson Variable Selection on the LPV dataset. (Left) Trajectories of the inclusion

probabilities πj(t). (Right) Number of signals discovered, where blue denotes the experimentally

validated signals and red are the unvalidated ones.

7.2 Durable Goods Marketing Data Set

Our second application examines a cross-sectional dataset described in Ni et al. (2012)

consisting of durable goods sales data from a major anonymous U.S. consumer electronics

retailer. The dataset features the results of a direct-mail promotion campaign in November

2003 where roughly half of the n = 176 961 households received a promotional mailer

with 10$ off their purchase during the promotion time period (December 4-15). If they

did purchase, they would get 10% off on a subsequent purchase through December. The

treatment assignment was random. The data contains p = 146 descriptors of all customers

including prior purchase history, purchase of warranties etc. We will investigate the effect

of the promotional campaign (as well as other covariates) on December sales. In addition,

we will interact the promotion mail indicator with customer characteristics to identify the

“mail-deal-prone” customers.

We dichotomized December purchase (in dollars) to create a binary outcome Yi =

I(December-salesi > 0) for whether or not the ith customer made any purchase in De-

cember. Regarding predictor variables, we removed any variables with missing values and

any binary variables with less than 10 samples in one group. This pre-filtering leaves us
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Figure 9: Thompson Variable Selection on the marketing data. (Left) Trajectories of the inclusion

probabilities πj(t) without knockoffs. (Right) Trajectories of the inclusion probabilities πj(t) with

knockoffs (in red).

with 114 variables whose names and descriptive statistics are reported in Section D in the

Appendix. We interact the promotion mail indicator with these variables to obtain p = 227

predictors. Due to the large volume of data (n ≈ 180 000), we were unable to run DART

and BART (BART package implementation) due to memory problems. This highlights the

need for TVS as a variable selector which can handle such voluminous data.

Unlike the HIV-I data in Section 7.1, there is no proxy for the ground truth. To

understand the performance quality of TVS, we added 227 normally distributed knock-

offs. The knockoffs are generated using create.second order function in the knockoff

R package (Patterson and Sesia (2018)) using a Gaussian Distributions with the same

mean and covariance structure (Candes et al. (2018)). We run TVS with a batch size

s ∈ {1 000, 2 000, 5 000} and M = 1 000 inner iterations until the posterior probabilities

have stabilized. The inclusion probabilities are plotted in Figure 9 for two cases (a) with-

out knockoffs (the first row) and (b) with knockoffs (the second row). It is interesting
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to note that, apart from one setting with s = 1 000, the knockoff trajectories are safely

suppressed below 0.5 (dashed line). Both with and without knockoffs, TVS chooses ‘the

number of months with purchases in past 24 month’ and ‘the November Promotion Sales’

as important variables. The selected variables for each combination of settings are summa-

rized in Table 3.

s = 1 000 s = 2 000 s = 5 000

Knockoff Yes No Yes No Yes No

total number of medium ticket items in previous 60 months 0.30 0.51 0.51 0.46 0.44 0.51

total number of small ticket items in previous 60 months 0.49 0.52 0.40 0.41 0.25 0.53

number of months shopped once in previous 12 months 0.34 0.41 0.44 0.42 0.41 0.57

number of months shopped once in previous 24 months 0.63 0.67 0.70 0.63 0.66 0.71

count of unique purchase trips in previous 24 months 0.55 0.26 0.48 0.53 0.68 0.67

total number of items purchased in previous 12 months 0.51 0.30 0.24 0.21 0.24 0.11

promo nov period: total sales 0.58 0.58 0.71 0.70 0.33 0.45

mailed in holiday 2001 mailer 0.25 0.43 0.08 0.41 0.42 0.52

percent audio category sales of total sales × mail indicator 0.41 0.50 0.15 0.28 0.13 0.10

promo nov period: total sales × mail indicator 0.15 0.35 0.46 0.41 0.66 0.71

indicator of holiday mailer 2002 promotion response × mail indicator 0.19 0.38 0.44 0.21 0.44 0.52

Table 3: Variables Selected by TVS with different s and with/without knockoff. The numbers

report conditional inclusion probabilities πi(t) after convergence, where values above 0.5 are in

bold.

Finally, we used the same set of variables (including knockoff variables) for different

variable selection methods and recorded the number of knockoffs chosen by each one. We

used BART (D = 20, MCMC iteration = 50 000), and DART (D = 50, MCMC iteration

= 50 000) with the same selection criteria as before, i.e. a variable is selected if it was split

on average at least once. We also consider LASSO where the sparsity penalty λ was chosen

by cross-validation. BART and DART cannot be run on the entire data set so we only

run it on a random subset of 10 000 data points. While TVS with large enough s does not

include any of the knockoffs, LASSO does include 14 and DART includes 4.
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8 Discussion

Our work pursues an intriguing connection between spike-and-slab variable selection and bi-

nary bandit problems. This pursuit has lead to a proposal of Thompson Variable Selection,

a reinforcement learning wrapper algorithm for fast variable selection in high dimensional

non-parametric problems. In related work, Liu et al. (2018) developed an ABC sampler for

variable subsets through a split-sample approach by (a) first proposing a subset St from a

prior, (b) keeping only those subsets that yield pseudo-data that are sufficiently close to the

left-out sample. TVS can be broadly regarded as a reinforcement learning elaboration of

this strategy where, instead of sampling from a (non-informative) prior π(St), one “updates

the prior π(St)” by learning from previous successes.

TVS can be regarded as a stochastic optimization approach to subset selection which

balances exploration and exploitation. TVS is suitable in settings when very many pre-

dictors and/or very many observations can be too overwhelming for machine learning. By

sequentially parsing subsets of data and reinforcing promising covariates, TVS can effec-

tively separate signal from noise, providing a platform for interpretable machine learning.

TVS minimizes regret by sequentially computing a median probability model rule obtained

by truncating sampled mean rewards. We provide bounds for this regret without neces-

sarily assuming that the mean arm rewards be unrelated. We observe strong empirical

performance of TVS under various scenarios, both on real and simulated data.
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